-
Introduction to Text Analytics
-
Applications and Challenges with Text Data
-
Introduction to Text Cleaning-Part 1
-
Introduction to Text Cleaning-Part 2
-
Demo: Reading Text Files in Python
-
Demo: Readnig PDF files in Python
-
Demo: Tokenization
-
Demo: Stopwords removal
-
Demo: Bag of words analysis using wordclouds
-
Demo : Twitter Hashtag Analysis
-
Demo: Stemming
-
Demo: Lemmatization
-
Frequency Based Vector Representation
-
Demo: Creating Document Term Matrix
-
Demo: Understanding Document Term Matrix
-
Term Frequency – Inverse Document Frequency
-
Demo: TF-IDF Transformation
-
Word Embeddings Based Vector Representations
-
Demo: Loading word embeddings
-
Introduction to Naive Bayes Algorithm
-
Demo: Document vector representation using word embeddings
-
Demo: Text classification using Naive Bayes Algorithm
-
Introduction to Sentiment Analysis
-
Sentiment analysis using VADER technique
-
Demo: Sentiment analysis using VADER – Part 1
-
Demo: Sentiment analysis using VADER – Part 2
-
Demo: Sentiment classifier
-
Introduction to Topic Modeling
-
Latent Dirichlet Allocation (LDA) Algorithm
-
Demo: Building LDA Topic Model
-
Demo: Understanding Topic Modeling results
-
Introduction to Text Summarization
-
Lex Rank Algorithm
-
Demo: Implemenation of Text Summarization
-
Case Study – Sentiment Analysis on Twitter data
-
Case Study: Text Classification using Word Embeddings & NN
-
Assignment 1 – Text Preprocessing & DTM Creation
-
Assignment 2: Extract themes from abstracts
-
Project: Topic modelling system based on reviews on Amazon
-
Text Analytics : Quiz